skip to main content


Search for: All records

Creators/Authors contains: "Horsburgh, Jeffery S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hydroinformatics and water data science topics are increasingly common in university graduate settings through dedicated courses and programs as well as incorporation into traditional water science courses. The technical tools and techniques emphasized by hydroinformatics and water data science involve distinctive instructional styles, which may be facilitated by online formats and materials. In the broader hydrologic sciences, there has been a simultaneous push for instructors to develop, share, and reuse content and instructional modules, particularly as the COVID-19 pandemic necessitated a wide scale pivot to online instruction. The experiences of hydroinformatics and water data science instructors in the effectiveness of content formats, instructional tools and techniques, and key topics can inform educational practice not only for those subjects, but for water science generally. This paper reports the results of surveys and interviews with hydroinformatics and water data science instructors. We address the effectiveness of instructional tools, impacts of the pandemic on education, important hydroinformatics topics, and challenges and gaps in hydroinformatics education. Guided by lessons learned from the surveys and interviews and a review of existing online learning platforms, we developed four educational modules designed to address shared topics of interest and to demonstrate the effectiveness of available tools to help overcome identified challenges. The modules are community resources that can be incorporated into courses and modified to address specific class and institutional needs or different geographic locations. Our experience with module implementation can inform development of online educational resources, which will advance and enhance instruction for hydroinformatics and broader hydrologic sciences for which students increasingly need informatics experience and technical skills. 
    more » « less
  2. null (Ed.)
  3. Abstract

    The Logan River watershed, located in Northern Utah, USA, consists of a relatively pristine, mountainous area that drains to a lower elevation, valley area influenced by both urban development and agriculture. The Logan River Observatory has been collecting aquatic (streamflow and water quality) and climate data throughout the Logan River watershed since 2014. While streamflow measurements are commonly made at the outlets of research watersheds, the Logan River watershed consists of diverse hydrologic, topographic, and geologic settings that require a detailed understanding of streamflow variability over time at many locations. Here, we illustrate: (a) the importance of collecting streamflow time series throughout complex watersheds, and (b) how simple flow balances can provide much needed hydrologic insight into the locations and timing of gains and losses over reaches to guide future investigations.

     
    more » « less
  4. Abstract

    Many have argued that datasets resulting from scientific research should be part of the scholarly record as first class research products. Data sharing mandates from funding agencies and scientific journal publishers along with calls from the scientific community to better support transparency and reproducibility of scientific research have increased demand for tools and support for publishing datasets. Hydrology domain‐specific data publication services have been developed alongside more general purpose and even commercial data repositories. Prominent among these are the Hydrologic Information System (HIS) and HydroShare repositories developed by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI). More broadly, however, multiple organizations have been involved in the practice of data publication in the hydrology domain, each having different roles that have shaped data publication and reuse. Bibliographic and archival approaches to data publication have been advanced, but both have limitations with respect to hydrologic data. Specific recommendations for improving data publication infrastructure, support, and practices to move beyond existing limitations and enable more effective data publication in support of scientific research in the hydrology domain include: improving support for journal article‐based data access and data citation, considering the workflow for data publication, enhancing support for reproducible science, encouraging publication of curated reference data collections, advancing interoperability standards for sharing data and metadata among repositories, developing partnerships with university libraries offering data services, and developing more specific data management plans. While presented in the context of CUAHSI's data repositories and experience, these recommendations are broadly applicable to other domains.

    This article is categorized under:

    Science of Water > Methods

     
    more » « less